Gene expression studies in isolated mitochondria: Solanum tuberosum rps10 is recognized by cognate potato but not by the transcription, splicing and editing machinery of wheat mitochondria
نویسندگان
چکیده
The complex gene expression mechanisms that occur in plant mitochondria, such as RNA editing and splicing, are not yet well understood. RNA editing in higher plant mitochondria is a highly specific process which modifies mRNA sequences by C-to-U conversions. It has been suggested that in some cases this process is required for splicing. Here, we use an experimental model based on the introduction of DNA into isolated mitochondria by electroporation to study organellar gene expression events. Our aim was to compare processing and editing of potato small ribosomal protein 10 gene (rps10) transcripts in heterologous (wheat mitochondria) and homologous (potato mitochondria) contexts. rps10 is a suitable model because it contains a group II intron, is absent in wheat mitochondria but is actively expressed in potato mitochondria, where transcripts are spliced and undergo five C-to-U editing events. For this purpose, conditions for electroporating isolated potato mitochondria were established. rps10 was placed under the control of either potato or wheat cox2 promoters. We found that rps10 was only transcribed under the control of a cognate promoter. In wheat mitochondria, rps10 transcripts were neither spliced nor edited while they are correctly processed in potato mitochondria. Interestingly, a wheat editing site grafted into rps10 was not recognized by wheat mitochondria but was correctly edited in potato mitochondria. Taken together, these results suggest that editing might occur only when the transcripts are engaged in processing and that they would not be available to editing factors outside of a putative RNA maturation machinery complex.
منابع مشابه
Intron RNA editing is essential for splicing in plant mitochondria
Most plant mitochondria messenger RNAs (mRNAs) undergo editing through C-to-U conversions located mainly in exon sequences. However, some RNA editing events are found in non-coding regions at critical positions in the predicted secondary and tertiary structures of introns, suggesting that RNA editing could be important for splicing. Here, we studied the relationships between editing and splicin...
متن کاملGene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles.
Mitochondrial gene expression was studied using an electrotransformation protocol to introduce foreign DNA into purified wheat mitochondria. Optimal conditions for DNA uptake and transient gene expression were determined. We show here that a DNA plasmid containing either a cognate or a non-cognate gene under the control of a plant mitochondrial promoter is incorporated into the organelle and fa...
متن کاملIsolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport.
We investigated whether and how mitochondria from durum wheat (Triticum durum Desf.) and potato (Solanum tuberosum), isolated from etiolated shoots and a cell suspension culture, respectively, oxidize externally added NADH via the mitochondrial shuttles; in particular, we compared the shuttles and the external NADH dehydrogenase (NADH DHExt) with respect to their capacity to oxidize external NA...
متن کاملDifferential import of nuclear-encoded tRNAGly isoacceptors into solanum Tuberosum mitochondria.
In potato ( Solanum tuberosum ) mitochondria, about two-thirds of the tRNAs are encoded by the mitochondrial genome and one-third is imported from the cytosol. In the case of tRNAGly isoacceptors, a mitochondrial-encoded tRNAGly(GCC) was found in potato mitochondria, but this is likely to be insufficient to decode the four GGN glycine codons. In this work, we identified a cytosolic tRNAGly(UCC)...
متن کاملMolecular features and mitochondrial import pathway of the 14-kilodalton subunit of cytochrome c reductase from potato.
The cytochrome c reductase complexes from fungi and mammals both contain a 14-kD protein (yeast, 14.4 kD; bovine, 13.4 kD) that does not directly participate in electron transfer but possibly is indirectly involved in the function of the complex and has a role in assembly of the multimeric enzyme. A subunit of comparable size was identified for the bc1 complex of higher plants. The 14-kD protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005